JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The organization of melanopsin-immunoreactive cells in microbat retina.

Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light and play roles in non-image forming vision, such as circadian rhythms, pupil responses, and sleep regulation, or image forming vision, such as processing visual information and directing eye movements in response to visual clues. The purpose of the present study was to identify the distribution, types, and proportion of melanopsin-immunoreactive (IR) cells in the retina of a nocturnal animal, i.e., the microbat (Rhinolophus ferrumequinum). Three types of melanopsin-IR cells were observed in the present study. The M1 type had dendritic arbors that extended into the OFF sublayer of the inner plexiform layer (IPL). M1 soma locations were identified either in the ganglion cell layer (GCL, M1c; 21.00%) or in the inner nuclear layer (INL, M1d; 5.15%). The M2 type had monostratified dendrites in the ON sublayer of the IPL and their cell bodies lay in the GCL (M2; 5.79%). The M3 type was bistratified cells with dendrites in both the ON and OFF sublayers of the IPL. M3 soma locations were either in the GCL (M3c; 26.66%) or INL (M3d; 4.69%). Additionally, some M3c cells had curved dendrites leading up towards the OFF sublayer of the IPL and down to the ON sublayer of the IPL (M3c-crv; 7.67%). Melanopsin-IR cells displayed a medium soma size and medium dendritic field diameters. There were 2-5 primary dendrites and sparsely branched dendrites with varicosities. The total number of the neurons in the GCL was 12,254.17 ± 660.39 and that of the optic nerve axons was 5,179.04 ± 208.00 in the R. ferrumequinum retina. The total number of melanopsin-IR cells was 819.74 ± 52.03. The ipRGCs constituted approximately 15.83% of the total RGC population. This study demonstrated that the nocturnal microbat, R. ferrumequinum, has a much higher density of melanopsin-IR cells than documented in diurnal animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app