Add like
Add dislike
Add to saved papers

The ephemeral dihydrate of sulfanilic acid.

Evaporation of an aqueous solution of sulfanilic acid (systematic name: 4-aminobenzene-1-sulfonic acid) at 273 K affords a crystalline dihydrate, C6 H7 NO3 S·2H2 O. The organic molecule exists as a zwitterion; two zwitterions are aligned in an antiparallel fashion about a crystallographic centre of inversion. They interact directly via two N-H...O hydrogen bonds between the ammonium group of one zwitterion and the sulfonate group of its symmetry-related counterpart, and their aromatic rings are π-stacked, with an interplanar distance of 3.533 (3) Å. One of the cocrystallized water molecules connects the resulting pairs into layers and the second crosslinks the layers into a three-dimensional network. All H atoms connected to N or O atoms find acceptors in suitable geometries. In the resulting crystal, polar and hydrogen-bond-dominated slabs alternate with stacks of organic arene rings. Although the new dihydrate shows efficient space filling, with a packing coefficient of 75.7%, it is unstable and undergoes fast desolvation at room temperature. In this process, the orthorhombic ansolvate forms as a pure phase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app