Add like
Add dislike
Add to saved papers

Artificial NO and Light Cooperative Nanofluidic Diode Inspired by Stomatal Closure of Guard Cells.

Gas messenger molecule (NO) plays important roles in K+ nanochannels of guard cells by binding directly to the heme-containing enzymes. Inspired by this natural phenomenon, we developed artificial K+ nanochannels modified with ferroporphyrin, where NO triggered the nanochannels to turn "ON" states from the ferroporphyrin blocked "OFF" states. The mechanism relies on the fact that NO has higher affinity with ferroporphyrin compared to carboxyl groups on the nanochannel surface. The synergistic effect of the released carboxyl groups and the conically asymmetric shape leads the ion transportation to be diode-like. However, the nanofluidic diode properties vanished after illumination with light to remove NO from the ferroporphyrin-NO complex. This NO and light cooperative nanofluidic diode possesses excellent stability and reversibility, which shows great promise for use in gas detection and remote control of mass delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app