CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

A balanced reciprocal translocation t(10;15)(q22.3;q26.1) interrupting ACAN gene in a family with proportionate short stature.

PURPOSE: Few examples of the involvement of a single gene in idiopathic short stature have been described until now. Our aim was to identify the causative gene of proportionate short stature in a large family showing co-segregation of the phenotype with the reciprocal translocation t(10;15)(q22;q24).

METHODS: FISH mapping was carried out with BACs and long-range PCR probes to identify the smallest genomic regions harboring the translocation breakpoints. Real-Time RT-PCR was performed in blood after pre-amplification of target genes cDNA.

RESULT: The affected family members presented with a final height of between - 2.41 and - 4.18 SDS and very mild skeletal dysmorphisms. Growth rates of the proband and of her cousin, whose childhood and pre-pubertal bone age corresponded to the chronological age, showed a poor growth spurt during treatment with rhGH. However, their adult height was greater than that of their untreated mothers, suggesting efficacy of GH therapy. Breakpoint mapping revealed that the translocation t(10;15)(q22.3;q26.1) disrupts, on 15q, the ACAN gene at intron 1, decreasing its transcriptional expression.

CONCLUSIONS: This is the first description of a chromosome rearrangement disrupting ACAN and leading to its haploinsufficiency. ACAN loss of function should be considered a potential underpinning of short patients who display a poor growth spurt and belong to families with autosomal dominant segregation of proportionate short stature. Besides this core phenotype, literature review suggests that advanced bone age, early onset osteochondritis dissecans, osteoarthritis, intervertebral disc disease as well as craniofacial dysmorphisms can be important suggestive phenotypes in affected families.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app