Add like
Add dislike
Add to saved papers

Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: an insight into the mechanism.

The present study reports a simple and eco-friendly synthesis of silver nanoparticles (AgNPs) using leaf extract of Rhynchosia suaveolens. UV-Vis analysis of R. suaveolens synthesized AgNPs (RS-AgNPs) showed surface plasmon resonance (SPR) peak at 426 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis revealed that RS-AgNPs were 10-30 nm in size with spherical shape. X-ray diffraction (XRD) analysis of RS-AgNPs confirmed the crystalline nature with face-centered cubic (FCC) lattice. Fourier transform infrared (FTIR) interprets that polyphenols and proteins take part in bioreduction and capping of RS-AgNPs. RS-AgNPs exhibited dose-dependent inhibition of proliferation of different cancer cells including DU145 and PC-3(human prostate carcinoma cell lines), SKOV3 (human ovarian carcinoma) and A549 (human lung adenocarcinoma)with IC50 values of 4.35, 7.72, 4.2 and 24.7 μg/mL, respectively. The plausible reasons behind anticancer activity of RS-AgNPs were explained using different assays on the most susceptible SKOV3 cells. RS-AgNPs induced oxidative stress in SKOV3 cells by generating reactive oxygen species (ROS), enhancing lipid peroxidation (LPO) levels and decreasing glutathione (GSH) levels. RS-AgNPs induced the apoptosis of SKOV3 cells by up regulating the caspase-3, caspase -8, caspase -9, p53 and BAX and down regulating the antiapoptotic protein Bcl-2. Further, RS-AgNPs showed elevation of caspase 3/7 activity and also exhibited antimigratory effect by inhibiting the migration of SKOV3 cells into the wounded area. The findings suggested that biogenic RS-AgNPs provide an alternative approach to overcome several limitations of chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app