Add like
Add dislike
Add to saved papers

Attenuation of West Nile Virus NS2B/NS3 Protease by Amino Terminal Copper and Nickel Binding (ATCUN) Peptides.

West Nile virus NS2B/NS3 protease (WNVP) is a viable target for the development of antiviral compounds. To that end, catalytic metallopeptides that incorporate the copper-binding ATCUN motif into either the N- or C-terminus of known WNVP targeting peptides have been developed as new families of peptide-based inhibitors. Each metallopeptide was evaluated based on its inhibitory constant (KI ), time-dependent inactivation of the protein, Michaelis-Menten parameters, and the ability to oxidatively modify WNVP. Following catalytic inactivation of WNVP, sequencing by LC-MS/MS demonstrated active site residues Ser135, Thr134, and Thr132, as well as residues in the S2 binding pocket, to be modified by oxidative chemistry. Results from a DNPH-based assay to detect oxidative damage showed the formation of carbonyls in WNVP treated with metallopeptides. These results suggest that the metallopeptides are attenuating WNVP activity by irreversible oxidation of amino acids essential to substrate binding and catalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app