Add like
Add dislike
Add to saved papers

Targeted Imaging of Brain Tumors with a Framework Nucleic Acid Probe.

Development of agents for delivering drugs and imaging probes across the blood-brain barrier (BBB) remains a major challenge. In this study, we designed a biocompatible framework nucleic acid (FNA)-based imaging probe for brain tumor-targeting. We employed a typical type of FNAs, tetrahedral DNA nanostructures (TDNs), as the building block, which were modified with angiopep-2 (ANG), a 19-mer peptide derived from human Kunitz domain of aprotinin. This probe exhibited high binding efficiency with low-density lipoprotein receptor-related protein-1 (LRP-1) of BBB and glioma. We found that ANG-functionalized TDNs (ANG-TDNs) stayed intact for at least 12 h in serum, and that ANG modification effectively enhanced cellular uptake of TDNs in brain capillary endothelial cells and Uppsala 87 malignant glioma (U87MG) cells. Remarkably, studies in both in vitro and in vivo models revealed that ANG-TDNs could cross the BBB. Especially, in vivo imaging showed strong fluorescent signals in U87MG human glioblastoma xenograft in nude mice. This study establishes that the FNA-based platform provides a new theranostic tool for the study and therapy of brain tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app