Add like
Add dislike
Add to saved papers

Investigation of the interaction of amyloid β peptide (11-42) oligomers with a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane using molecular dynamics simulation.

Some amyloid related proteins/peptides are involved in aggregation and pore formation in phospholipid membranes (cell membranes), which result in a variety of neurological disorders such as Alzheimer's disease, Parkinson's disease and Huntington disease. In this research, the mechanism of pore formation by β amyloid (Aβ) peptides was investigated using molecular dynamics simulation by simulating the interaction of the Aβ(11-42) peptide, with a lipid membrane and the potential of the mean force of interaction was evaluated. A 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane system with different cholesterol concentrations was used to simulate the neural cell membrane. The results indicated that Aβ(11-42) peptide oligomers with peptide numbers larger than two were more likely to lead to lipid deformation and water channels, and the free energy of penetration into the membrane decreased with the increasing number of peptides. Increasing the concentration of cholesterol leads to a higher energy barrier for the penetration of peptide into the lipid bilayer thereby protecting the membrane. The results of this research have potential application in the prevention of pore formation by Aβ aggregates on the lipid membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app