Add like
Add dislike
Add to saved papers

Estrogen modulates vascular smooth muscle cell function through downregulation of SIRT1.

Oncotarget 2017 December 16
Background: There are sex differences in the incidence and severity of cardiovascular disease. Although an estrogen-mediated vasculoprotective effect is widely accepted, clinical trial results have been conflicting and the detailed mechanisms are still unclear. Sirtuin 1 (SIRT1), a class III histone deacetylase, may protect against vascular aging and atherosclerosis; however, the effects of estrogen on SIRT1 expression and vascular smooth muscle cell (VSMC) behavior remain unknown.

Materials and Methods: We ovariectomized (OVX) female, wild-type, C57BL/6J mice, which were randomized into non-estrogen- and estrogen-supplemented groups. We also treated A7r5 VSMCs with 17-β-estradiol and resveratrol, a SIRT1 activator, in vitro , and measured the expression of SIRT1 and apoptotic markers, as well as proliferation, viability, and migration.

Results: Aortic tissue from OVX mice exhibited marked VSMC hyperplasia and upregulation of SIRT1, which was reversed by 17-β-estradiol supplementation, as assessed by western blotting and immunohistochemical staining. In vitro , 17-β-estradiol downregulated SIRT1 expression in a dose- and time-dependent manner, increased apoptosis, and reduced proliferation, viability, and migration. Resveratrol reversed these effects through the activation of SIRT1. Estrogen appeared to mediate its effects through the Akt and ERK pathways.

Conclusions: Estrogen may regulate cardiovascular health via the expression of SIRT1, possibly through the AKT and ERK signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app