Add like
Add dislike
Add to saved papers

Iron Robustly Stimulates Simultaneous Nitrification and Denitrification Under Aerobic Conditions.

Simultaneous nitrification and denitrification (SND) is a promising single-reactor biological nitrogen-removal method. Activated sludge with and without iron scrap supplementation (Sludge-Fe and Sludge-C, respectively) was acclimated under aerobic condition. The total nitrogen (TN) content of Sludge-Fe substantially decreased from 25.0 ± 1.0 to 11.2 ± 0.4 mg/L, but Sludge-C did not show the TN-removal capacity. Further investigations excluded a chemical reduction of NO3 - -N by iron and a decrease of NH4 + -N by microbial assimilation, and the contribution of SND was verified. Moreover, the amount of aerobic denitrifiers, such as bacteria belonging to the genera Thauera, Thermomonas, Rhodobacter, and Hyphomicrobium, was considerably enhanced, as observed through Miseq Illumina sequencing method. The activities of the key enzymes ammonia monooxygenase (AMO) and nitrite oxidoreductase (NXR), which are associated with nitrification, and periplasmic nitrate reductase (NAP) and nitrite reductase (NIR), which are related to denitrification, in Sludge-Fe were 1.23-, 1.53-, 3.60-, and 1.55-fold higher than those in Sludge-C, respectively. In Sludge-Fe, the quantity of the functional gene NapA encoding enzyme NAP, which is essential for aerobic denitrification, was significantly promoted. The findings indicate that SND is the primary mechanism underlying the removal of TN and that iron scrap can robustly stimulate SND under aerobic environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app