Add like
Add dislike
Add to saved papers

New Insights into Hydride Bonding, Dynamics, and Migration in La 2 LiHO 3 Oxyhydride.

Hydride anion-conducting oxyhydrides have recently emerged as a brand new class of ionic conductors. Here we shed a first light onto their local vibrations, bonding mechanisms, and anion migration properties using the powerful combination of high-resolution inelastic neutron scattering and a set of rigorously experimentally validated density functional theory calculations. By means of charge-density analysis we establish the bonding to be strongly anisotropic; ionic in the perovskite layer and covalent in the rock salt layer. Climbing nudged elastic band calculations allow us to predict the hydride migration paths, which crucially we are able to link to the observed exotic ionic-covalent hybrid bonding nature. In particular, hydride migration in the rock salt layer is seen to be greatly hindered by the presence of covalent bonding, forcing in-plane hydride migration in the perovskite layer to be the dominant transport mechanism. On the basis of this microscopic insight into the transport and bonding, we are able to propose future candidates for materials that are likely to show enhanced hydride conductivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app