LETTER
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Metabolic Feedback Circuits Provide Rapid Control of Metabolite Dynamics.

ACS Synthetic Biology 2018 Februrary 17
Metabolism constitutes the basis of life, and the dynamics of metabolism dictate various cellular processes. However, exactly how metabolite dynamics are controlled remains poorly understood. By studying an engineered fatty acid-producing pathway as a model, we found that upon transcription activation a metabolic product from an unregulated pathway required seven cell cycles to reach to its steady state level, with the speed mostly limited by enzyme expression dynamics. To overcome this limit, we designed metabolic feedback circuits (MeFCs) with three different architectures, and experimentally measured and modeled their metabolite dynamics. Our engineered MeFCs could dramatically shorten the rise-time of metabolites, decreasing it by as much as 12-fold. The findings of this study provide a systematic understanding of metabolite dynamics in different architectures of MeFCs and have potentially immense applications in designing synthetic circuits to improve the productivities of engineered metabolic pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app