Add like
Add dislike
Add to saved papers

Structural and Kinetic Studies of Intermediates of a Biomimetic Diiron Proton-Reduction Catalyst.

Inorganic Chemistry 2018 January 17
One-electron reduction and subsequent protonation of a biomimetic proton-reduction catalyst [FeFe(μ-pdt)(CO)6 ] (pdt = propanedithiolate), 1, were investigated by UV-vis and IR spectroscopy on a nano- to microsecond time scale. The study aimed to provide further insight into the proton-reduction cycle of this [FeFe]-hydrogenase model complex, which with its prototypical alkyldithiolate-bridged diiron core is widely employed as a molecular, precious metal-free catalyst for sustainable H2 generation. The one-electron-reduced catalyst was obtained transiently by electron transfer from photogenerated [Ru(dmb)3 ]+ in the absence of proton sources or in the presence of acids (dichloro- or trichloroacetic acid or tosylic acid). The reduced catalyst and its protonation product were observed in real time by UV-vis and IR spectroscopy, leading to their structural characterization and providing kinetic data on the electron and proton transfer reactions. 1 features an intact (μ2 ,κ2 -pdt)(μ-H)Fe2 core in the reduced, 1- , and reduced-protonated states, 1H, in contrast to the Fe-S bond cleavage upon the reduction of [FeFe(bdt)(CO)6 ], 2, with a benzenedithiolate bridge. The driving-force dependence of the rate constants for the protonation of 1- (kpt = 7.0 × 105 , 1.3 × 107 , and 7.0 × 107 M-1 s-1 for the three acids used in this study) suggests a reorganization energy >1 eV and indicates that hydride complex 1H is formed by direct protonation of the Fe-Fe bond. The protonation of 1- is sufficiently fast even with the weaker acids, which excludes a rate-limiting role in light-driven H2 formation under typical conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app