Add like
Add dislike
Add to saved papers

Bioactive Glass Particles in Two-Dimensional and Three-Dimensional Osteogenic Cell Cultures.

This study aimed to investigate the influence of a three-dimensional cell culture model and bioactive glass (BG) particles on the expression of osteoblastic phenotypes in rat calvaria osteogenic cells culture. Cells were seeded on two-dimensional (2D) and three-dimensional (3D) collagen with BG particles for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity was performed. Cell morphology and immunolabeling of noncollagenous bone matrix proteins were assessed by epifluorescence and confocal microscopy. The expressions of osteogenic markers were analyzed using RT-PCR. Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay. Experimental cultures produced a growing cell viability rate up to 14 days. Although ALP activity at 7 days was higher on BG cultures, cells on 3D and 3D+BG had an activity decrease of ALP at 14 days. Three-dimensional conditions favored the immunolabeling for OPN and BSP and the expression of ALP and COL I mRNAs. BG particles influenced positively the OC and OPN mRNAs expression and calcified nodule formation in vitro. The results indicated that the 3D cultures and BG particles contribute to the expression of osteoblastic phenotype and to differentiated and mineralized matrix formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app