Add like
Add dislike
Add to saved papers

Magnetic and structural depth profiles of Heusler alloy Co<sub>2</sub>FeAl<sub>0.5</sub>Si<sub>0.5</sub> epitaxial films on Si(111).

The depth-resolved chemical structure and magnetic moment of Co&lt;sub&gt;2&lt;/sub&gt;FeAl&lt;sub&gt;0.5&lt;/sub&gt;Si&lt;sub&gt;0.5&lt;/sub&gt; thin films grown on Si(111) have been determined using x-ray and polarized neutron reflectometry. Bulk-like magnetization is retained across the majority of the film, but reduced moments are observed within 45 Å of the surface and in a 25 Å substrate interface region. The reduced moment is related to with compositional changes due to oxidation and diffusion, which are further quantified by elemental profiling using electron microscopy with electron energy loss spectroscopy. The accuracy of structural and magnetic depth-profiles obtained from simultaneous modeling is discussed using different approaches with different degree of constraints on the parameters. Our approach illustrates the challenges in fitting reflectometry data from these multi-component quaternary Heusler alloy thin films.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app