Add like
Add dislike
Add to saved papers

Automated segmentation and quantification of OCT angiography for tracking angiogenesis progression.

Angiogenesis is recognized as a crucial component of many neurovascular diseases such as stroke, carcinogenesis, and neurotoxicity of abused drug. The ability to track angiogenesis will facilitate a better understanding of disease progression and assessment of therapeutical effects. Optical coherence angiography (OCTA) is a promising tool to assess 3D microvascular networks due to its micron-level resolution, high sensitivity, and relatively large field of view. However, quantitative OCTA image analysis for characterization of microvascular network changes, including accurately tracking the progression of angiogenesis, remains a challenge. In this paper, we proposed an angiogenesis tracking algorithm which combines improved vessel segmentation and brain boundary detection methods to significantly enhance time-lapse OCTA images for quantification of microvascular network changes. Specifically, top-hat enhancement and optimally oriented flux (OOF) algorithms facilitated accurate segmentation of cerebrovascular networks (including capillaries); graph-search based brain boundary detection enabled coregistration of 3D OCTA data sets from different time points for accurate vessel density assessment and analysis of their changes in various cortical layers. Results show that this algorithm significantly enhanced the accuracy of vessel segmentation compared to Hessian method. Application to chronic cocaine intoxication study shows effectively reduced errors in chronic tracking of microvasculature and more accurate assessment of vessel density changes induced by angiogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app