Add like
Add dislike
Add to saved papers

Extracellular superoxide dismutase inhibits hepatocyte growth factor-mediated breast cancer-fibroblast interactions.

Oncotarget 2017 December 9
We have previously shown tumor suppressive effects of extracellular superoxide dismutase, EcSOD in breast cancer cells. In this study, an RTK signaling array revealed an inhibitory effect of EcSOD on c-Met phosphorylation and its downstream kinase c-Abl in MDA-MB231 cells. Moreover, an extracellular protein array showed that thrombospondin 1 (TSP-1), a scavenger of the c-Met ligand, hepatocyte growth factor (HGF) is significantly up-regulated in EcSOD overexpressing cells (Ec.20). We further determined the effects of EcSOD on HGF/c-Met-mediated cancer-fibroblast interactions by co-culturing normal fibroblasts (RMF) or RMF which overexpresses HGF (RMF-HGF) with MDA-MB231 cells. We observed that while RMF-HGF significantly promoted Matrigel growth of MDA-MB231, overexpression of EcSOD inhibited the HGF-stimulated growth. Similarly, a SOD mimetic, MnTE-2-PyP, inhibited HGF-induced growth and invasion of MDA-MB231. In addition, a long-term heterotypic co-culture study not only showed that Ec.20 cells are resistant to RMF-HGF-induced invasive stimulation but RMF-HGF that were co-cultured with Ec.20 cells showed an attenuated phenotype, suggesting an oxidative-mediated reciprocal interaction between the two cell types. In addition, we demonstrated that RMF-HGF showed an up-regulation of an ROS-generating enzyme, NADPH oxidase 4 (Nox4). Targeting this pro-oxidant significantly suppressed the activated phenotype of RMF-HGF in a collagen contraction assay, suggesting that RMF-HGF contributes to the oxidative tumor microenvironment. We have further shown that scavenging ROS with EcSOD significantly inhibited RMF-HGF-stimulated orthotopic tumor growth of MDA-MB231. This study suggests the loss of EcSOD in breast cancer plays a pivotal role in promoting the HGF/c-Met-mediated cancer-fibroblast interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app