Add like
Add dislike
Add to saved papers

MicroRNAs sequencing unveils distinct molecular subgroups of plasmablastic lymphoma.

Oncotarget 2017 December 9
Plasmablastic lymphoma (PBL) is an aggressive lymphoma, often arising in the context of immunodeficiency and associated with Epstein-Barr virus (EBV) infection. The most frequently detected genetic alteration is the deregulation of MYC gene through the translocation - t(8;14)(q24;q32). The diagnosis of PBL is often challenging because it has an overlap in morphology, immunophenotype, cytogenetics and virus association with other lymphomas and plasma cell neoplasms; further, its molecular basis remains elusive. In the present study we aimed to better define the possible contribution of EBV infection as well as miRNA deregulation in PBL pathogenesis. We studied 23 cases of PBL, 19 Burkitt lymphomas (BL), and 17 extra-medullary plasmacytoma (EMPC). We used qPCR and immunohistochemistry to assess EBV latency patterns, while micro-RNA (miRNA) profiling was performed by next generation sequencing (Illumina) and validated by qPCR. Our analysis revealed a non-canonical EBV latency program with the partial expression of some proteins characterizing latency II and the activation of an abortive lytic cycle. Moreover, we identified miRNA signatures discriminating PBL from BL and EMPC. Interestingly, based on the miRNA profile, PBL appeared constituted by two discrete subgroups more similar to either BL or EMPC, respectively. This pattern was confirmed in an independent set of cases studied by qPCR and corresponded to different clinico-pathological features in the two groups, including HIV infection, MYC rearrangement and disease localization. In conclusion, we uncovered for the first time 1) an atypical EBV latency program in PBL; 2) a miRNA signature distinguishing PBL from the closest malignant counterparts; 3) the molecular basis of PBL heterogeneity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app