Add like
Add dislike
Add to saved papers

Physical Cues Drive Chondrogenic Differentiation.

BACKGROUND: Cellular differentiation occurs in a complicated microenvironment containing multiple components including soluble factors and physical cues. In addition to biochemical composition, physical cues are also crucial in determining cellular behaviors.

OBJECTIVE: To better understand the interaction between physical signals and cells, we discuss the effects of physical cues on cellular behaviors, especially chondrogenic differentiation in vitro. Furthermore, the mechanisms by which these physical signals are transmitted from the extracellular matrix into the cell are also considered.

RESULTS: Physical cues can dramatically regulate specific cellular functions in cartilage tissue engineering. Integrin and FAs act as mechano-sensors to transmit physical cues from the ECM into cytoskeleton- signaling network. Meanwhile, the RhoA/ROCK signaling pathway and YAP/TAZ play indispensable roles in cell and ECM linkages.

CONCLUSION: The investigation of physical cues clarifies cellular behaviors. This information can be applied to tissue engineering scaffold and biological material production in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app