Journal Article
Review
Add like
Add dislike
Add to saved papers

Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics.

GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+ /α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+ /β- and γ+ /β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app