Add like
Add dislike
Add to saved papers

Proteome-scale identification of Leishmania infantum for novel vaccine candidates: A hierarchical subtractive approach.

Vaccines are one of the most significant achievements in medical science. However, vaccine design is still challenging at all stages. The selection of antigenic peptides as vaccine candidates is the first and most important step for vaccine design. Experimental selection of antigenic peptides for the design of vaccines is a time-consuming, labor-intensive and expensive procedure. More recently, in the light of computer-aided biotechnology and reverse vaccinology, the precise selection of antigenic peptides and rational vaccine design against many pathogens have developed. In this study, the whole proteome of Leishmania infantum was analyzed using a pipeline of algorithms. From the set of 8045 proteins of L. infantum, sixteen novel antigenic proteins were derived using a hierarchical proteome subtractive analysis. These novel vaccine targets can be utilized as top candidates for designing the new prophylactic or therapeutic vaccines against visceral leishmaniasis. Significantly, all the sixteen novel vaccine candidates are non-allergen antigenic proteins that have not been used for the design of vaccines against visceral leishmaniasis until now.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app