Add like
Add dislike
Add to saved papers

Patterns of cation binding to the aromatic amino acid R groups in Trp, Tyr, and Phe.

Previous joint experimental and theoretical work demonstrates that typically soluble peptides will be rendered insoluble in the presence of saturated sodium ions in aqueous solution due to disruption of cation-π interactions between Trp and Lys. The present work utilizes quantum chemical methods including density functional theory, symmetry-adapted perturbation theory, and even coupled cluster theory to determine the strengths of cation-π interactions for the aromatic R groups of Trp, Tyr, and Phe (approximated as skatole, methyl phenol, and toluene) with both alkali and alkaline-Earth atomic cations and electron-accepting R groups from Lys, Arg, and His approximated as methyl ammonium, guanidinium, and imidazolium cations. This work shows that sodium ion is still the most likely disrupter of peptide folding built upon cation-π interactions, since Trp, Tyr, and Phe all bind more strongly to sodium ion than to any of the polyatomic cations. Additionally, the atomic cation complex binding energies decrease with an increase in partial charge on the atomic cation in the complex. However, as the average partial charge increases in the interacting hydrogen atoms in the polyatomic cations, the binding energy increases. The disruption of such peptide-peptide cation-π interactions is certainly relevant for peptide design in β-sheets or β-hairpin structures, but it could also have implications for astrobiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app