Add like
Add dislike
Add to saved papers

Improved photocatalytic and photoelectrochemical performance of monoclinic bismuth vanadate by surface defect states (Bi 1-x VO 4 ).

Due to visible light absorption and photochemical stability, Bismuth vanadate (BiVO4 ), recognized to be a promising photoanodes for designing high efficiency semiconductor photoelectrochemical (PEC) devices. To improve the photocatalytic and PEC performance of BiVO4 , the porous monoclinic BiVO4 with surface bismuth vacancy (Bi1-x VO4 (s-m)) was obtained after the calcination of tetrahedron bismuth vanadate (BiVO4 (s-t)). The photocatalytic experiments showed that despite the relatively lower adsorption capacity of Bi1-x VO4 (s-m) as compared with BiVO4 (s-t), its photocatalytic activity for the photodegradation of tetracyclines (TCs) was 15-fold greater. A four-layer thin films of BiVO4 were deposited by spin coating with intermediate annealing treatment between layers and final calcination at 450 °C in air to shed light on carrier transport in Bi1-x VO4 (s-m). The PEC results indicated that BiVO4 (s-t) showed poor charge carrier mobility, while the Bi1-x VO4 (s-m) showed great improvement by transformation of the tetrahedron BiVO4 (s-t) into monoclinic phase, creation of new surface defect states and formation of a porous structure in Bi1-x VO4 (s-m). Furthermore, Bi1-x VO4 (s-m) showed enhanced and stable photocurrent density of 1.2 mA/cm2 at 1.0 V vs. Ag/AgCl which was achieved under visible light illumination using 0.1 M Na2 SO4 aqueous solution. The porous Bi1-x VO4 (s-m) showed the band gap narrowing of 0.08 eV, valence band up-shifting of 0.150 eV and 100 mV cathodic shift in onset potential relative to BiVO4 (s-t). This enhancement is assigned to the longer electron lifetime of Bi1-x VO4 (s-m), 10-fold compared to that of BiVO4 (s-t), resulting in a minimized electron-hole pairs recombination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app