Add like
Add dislike
Add to saved papers

Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.

The mechanical properties of the bone play a decisive role in the resistance of the bone to fracture. Clinically, the quantity of the bone in the mineral phase has been considered as the gold-standard indicator for the risk of bone fracture. However, the bone is a complex tissue with a hierarchical-structure consisting of organic matrix, mineral hydroxyapatite, and water. Collagen comprises up to 90% of the organic matrix in the bone, and is vital for its mechanical behavior. To date, the morphological and mechanical responses of collagen fibrils in the bone matrix have been largely overlooked. In the present study, an atomic force microscopy-based imaging and indentation approach is introduced and integrated with a tibia axial loading model. The morphology of mineralized Type I collagen fibrils of the murine cortical tibia is imaged after demineralization, and the in situ elastic modulus of the fibrils is quantified at different loading conditions. Results suggested that the mineralized collagen fibrils are stretched in the early phase of bone deformation, characterized by the elongation of the D-periodic spacing. Reorientation of the collagen fibrils is demonstrated in the subsequent phase of bone deformation. The in situ radial elastic modulus of the collagen fibrils remained constant under the tested loading conditions. These experimental findings provide evidence in support of the unique deformation regimes of bone tissue from the perspective of alterations of mineralized collagen fibrils. This study allows the understanding of the unique mechanical behavior of the bone at the nanoscale, and reveals the mechanisms of relevant diseases that impair the mechanical properties of the bone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app