Add like
Add dislike
Add to saved papers

NFE2L2/NRF2 silencing-inducible miR-206 targets c-MET/EGFR and suppresses BCRP/ABCG2 in cancer cells.

Oncotarget 2017 December 6
The nuclear factor (erythroid-derived 2)-like 2 (NFE2L2/NRF2) plays a critical role in the expression of multiple antioxidant and detoxifying enzymes. Herein, we provide evidence of the molecular links between NRF2 and oncogenic signaling hepatocyte growth factor receptor (HGFR/c-MET) and epidermal growth factor receptor (EGFR). Interfering RNA-induced stable inhibition of NRF2 in ovarian carcinoma SKOV3 and renal carcinoma A498 reduced the levels of c-MET and EGFR. MicroRNA-206 (miR-206) that was increased in both NRF2 -silenced cells was predicted as a dual regulator of c-MET and EGFR. As experimental evidence, miR-206 decreased c-MET and EGFR levels through a direct binding to the 3'-untranslated region of the c-MET and EGFR genes. The treatment of NRF2- knockdown cells with the miR-206 inhibitor could restore c-MET and EGFR levels. The miR-206-mediated c-MET/EGFR repression resulted in two outcomes. First, presumably through the inhibition of c-MET/EGFR-dependent cell proliferation, overexpression of miR-206 inhibited tumor growth in SKOV3-inoculated nude mice. Second, reduced c-MET/EGFR in NRF2 -silenced cells affected breast cancer resistance protein (BCRP/ABCG2) levels. The pharmacological and genetic inhibition of c-MET or EGFR, as well as the miR-206 mimic treatment, repressed BCRP levels and increased cellular accumulation of doxorubicin. In line with these, treatment of NRF2 -silenced SKOV3 with the miR-206 inhibitor elevated BCRP levels and consequently made these cells more resistant to doxorubicin treatment. Collectively, our results demonstrated that the NRF2 silencing-inducible miR-206 targeted both c-MET and EGFR, and subsequently suppressed the BCRP level in cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app