Add like
Add dislike
Add to saved papers

The pH-dependent activation mechanism of Ser102 in Escherichia coli alkaline phosphatase: a theoretical study.

The accepted catalytic mechanism of alkaline phosphatases was established on the hypothesis that Mg-coordinated water is a readily available hydroxide ion that functions as a general base and accepts a proton from the Ser102 hydroxyl group. The roles of the two distinctive residues Asp153 and Lys328 in Escherichia coli alkaline phosphatase (ECAP), which distinguish it from the mammalian enzymes, are elusive. Based on the crystal structures of ECAP in the absence and presence of inorganic phosphate, we have investigated the activation of Ser102 for nucleophilic attack and the subsequent formation of a covalent phosphoseryl intermediate using hybrid density functional theory (DFT) with the B3LYP functional. Our calculations confirmed a proton transfer path from the hydroxyl group of Ser102 to the carboxyl group of Asp153 via water-mediated interactions through which Ser102 can be activated for nucleophilic attack. Our calculations further suggest that the activation mechanism of Ser102 is pH dependent, which explains why ECAP achieves its maximum activity at an alkaline pH for enzyme-catalysed reactions. This activation mechanism can also be extended to all APs with similar active-site structures. Our study, for the first time, provides the definite activation mechanism of Ser102 in ECAP, which is universal for all APs and explains the alkaline phosphatase activity of these enzymes. This work also sheds new light on the relationship between enzyme-catalytic mechanisms and enzyme-catalytic properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app