Add like
Add dislike
Add to saved papers

Avoiding the ingestion of cytotoxic concentrations of ethanol may reduce the risk of cancer associated with alcohol consumption.

Alcohol consumption is a known risk factor for cancer. Almost 6% of all cancers worldwide are attributable to alcohol use. Approximately half of them occur in tissues highly exposed to ethanol, such as the oral cavity, pharynx, upper larynx and esophagus. However, since ethanol is not mutagenic and the mutagenic metabolite of ethanol (acetaldehyde) is mainly produced in the liver, it is unclear why alcohol consumption preferentially exerts a local carcinogenic effect. Recent findings indicate that the risk of cancer in a tissue is strongly correlated with the number of stem cell divisions accumulated by the tissue; the accumulation of stem cell divisions leads to the accumulation of cancer-promoting errors such as mutations occurring during DNA replication. Since cell death activates the division of stem cells, we recently proposed that the possible cytotoxicity of ethanol on the cells lining the tissues in direct contact with alcoholic beverages could explain the local carcinogenic effect of alcohol. Here we report that short-term exposures (2-3 s) to ethanol concentrations between 10% and 15% start to cause a marked cytotoxic effect on human epithelial keratinocytes in a concentration-dependent manner. We propose that choosing alcoholic beverages containing non-cytotoxic concentrations of ethanol, or diluting ethanol to non-cytotoxic concentrations, may be a simple and effective way to reduce the risk of cancers of the oral cavity, pharynx, larynx and esophagus in alcohol users. This preventive strategy may also reduce the known synergistic effect of alcohol drinking and tobacco smoking on the risk of these cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app