Add like
Add dislike
Add to saved papers

Mitochondrial dysfunction in myotonic dystrophy type 1.

The pathophysiological mechanism linking the nucleotide expansion in the DMPK gene to the clinical manifestations of myotonic dystrophy type 1 (DM1) is still unclear. In vitro studies demonstrate DMPK involvement in the redox homeostasis of cells and the mitochondrial dysfunction in DM1, but in vivo investigations of oxidative metabolism in skeletal muscle have provided ambiguous results and have never been performed in the brain. Twenty-five DM1 patients (14M, 39 ± 11years) underwent brain proton MR spectroscopy (1 H-MRS), and sixteen cases (9M, 40 ± 13 years old) also calf muscle phosphorus MRS (31 P-MRS). Findings were compared to those of sex- and age-matched controls. Eight DM1 patients showed pathological increase of brain lactate and, compared to those without, had larger lateral ventricles (p < 0.01), smaller gray matter volumes (p < 0.05) and higher white matter lesion load (p < 0.05). A reduction of phosphocreatine/inorganic phosphate (p < 0.001) at rest and, at first minute of exercise, a lower [phosphocreatine] (p = 0.003) and greater [ADP] (p = 0.004) were found in DM1 patients compared to controls. The post-exercise indices of muscle oxidative metabolism were all impaired in DM1, including the increase of time constant of phosphocreatine resynthesis (TC PCr, p = 0.038) and the reduction of the maximum rate of mitochondrial ATP synthesis (p = 0.033). TC PCr values correlated with the myotonic area score (ρ = 0.74, p = 0.01) indicating higher impairment of muscle oxidative metabolism in clinically more affected patients. Our findings provide clear in vivo evidence of multisystem impairment of oxidative metabolism in DM1 patients, providing a rationale for targeted treatment enhancing energy metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app