Add like
Add dislike
Add to saved papers

Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.

Analytica Chimica Acta 2018 Februrary 14
The advent of 3D printing has allowed for rapid bench-top fabrication of molds for casting polydimethylsiloxane (PDMS) chips, a widely-used polymer in prototyping microfluidic devices. While fabricating PDMS devices from 3D printed molds is fast and cost-effective, creating smooth surface topology is highly dependent on the printer's quality. To produce smooth PDMS channels from these molds, we propose a novel technique in which a lubricant is tethered to the surface of a 3D printed mold, which results in a smooth interface for casting PDMS. Fabricating the omniphobic-lubricant-infused molds (OLIMs) was accomplished by coating the mold with a fluorinated-silane to produce a high affinity for the lubricant, which tethers it to the mold. PDMS devices cast onto OLIMs produced significantly smoother topology and can be further utilized to fabricate smooth-channeled PDMS devices. Using this method, we reduced the surface roughness of PDMS microfluidic channels from 2 to 0.2 μm (10-fold decrease), as well as demonstrated proper operation of the fabricated devices with superior optical properties compared to the rough devices. Furthermore, a COMSOL simulation was performed to investigate how the distinct surface topographies compare regarding their volumetric velocity profile and the shear rate produced. Simulation results showed that, near the channel's surface, variations in flow regime and shear stress is significantly reduced for the microfluidic channels cast on OLIM compared to the ones cast on uncoated 3D printed molds. The proposed fabrication method produces high surface-quality microfluidic devices, comparable to the ones cast on photolithographically fabricated molds while eliminating its costly and time-consuming fabrication process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app