Add like
Add dislike
Add to saved papers

Tracking kidney stones in a homogeneous medium using a trilateration approach.

Shock wave lithotripsy is a non-invasive procedure by which kidney stones are fragmented by thousands of shock waves. Currently, many shock waves are delivered to the body that do not impact the stone, but do result in tissue trauma. This motivates developing a monitoring system to locate kidney stones, with the goal of gating shock waves not aligned with the stone, and hence, reducing renal trauma during lithotripsy. The system consists of a circular array housing twenty-two 0.5 MHz transducers that can be mounted on a clinical lithotripter. It was deployed in a water tank and tested with two stone models made from gypsum cement and a stone model fragment. An algorithm consisting of threshold detection, automatic rejection of weak signals, and triangulation was developed to determine the location of stones. The results show that within ±15 mm of the focus of the lithotripter, the accuracy was better than 4 mm in the lateral directions and 2 mm in the axial direction. Using off-the-shelf hardware, the algorithm can calculate stone positions every 1 s allowing for real-time tracking during lithotripsy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app