Add like
Add dislike
Add to saved papers

Attenuation of low-frequency underwater sound using an array of air-filled balloons and comparison to effective medium theory.

The ultimate goal of this work is to accurately predict the attenuation through a collection of large (on the order of 10-cm-radius) tethered encapsulated bubbles used in underwater noise abatement systems. Measurements of underwater sound attenuation were performed during a set of lake experiments, where a low-frequency compact electromechanical sound source was surrounded by different arrays of encapsulated bubbles with various individual bubbles sizes and void fractions. The measurements were compared with an existing predictive model [Church, J. Acoust. Soc. Am. 97, 1510-1521 (1995)] of the dispersion relation for linear propagation in liquid containing encapsulated bubbles. Although the model was originally intended to describe ultrasound contrast agents, it is evaluated here for large bubbles, and hence low frequencies, as a design tool for future underwater noise abatement systems, and there is good quantitative agreement between the observations and the model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app