Add like
Add dislike
Add to saved papers

Fluorescent Porous Carbazole-Decorated Copolymer Monodisperse Microspheres: Facile synthesis, Selective and Recyclable Detection of Iron (III) in Aqueous Medium.

We demonstrate an environmentally friendly one-step soap-free emulsion polymerization strategy to develop fluorescent carbazole-based copolymer monodisperse microspheres for highly sensitive and selective detection of Fe3+ . The copolymer microspheres feature a stable spherical morphology with a narrow size distribution through regulating N-vinylcarbazole (NVCz) content (1.25-10.0 wt.%). Notably, the as-made microspheres exhibit a strong luminescence, tunable emission intensity and specific surface areas. Interestingly, the fluorescence of the copolymer microspheres can be selectively quenched by trace amounts of Fe3+ due to the oxidation of carbazole, and the quenching fluorescence can be facilely recovered by reduction with NaBH4 . Its excellent sensing performance is shown in terms of high sensitivity (low limit of detection, 1.3 μm), excellent selectivity, and rapid response rate, due to the porous nature of the copolymer microspheres. These results illustrate the copolymer microspheres obtained by simple preparative procedure without using expensive or toxic raw materials would serve as a high performance sensor for highly selective and recyclable detection of Fe3+ in aqueous medium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app