JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles.

Penetration of antibiotics into and through the cornea is a major limiting factor in the treatment of ocular infections. Several strategies are in vogue to overcome this limitation such as use of fortified drops, gels, and subconjunctival injections. Here, we present the fabrication of rapidly dissolving polymeric microneedle array to effectively deliver besifloxacin through the cornea. Microneedles were prepared using polyvinyl alcohol and polyvinyl pyrrolidone by the micromolding technique. The model fluoroquinolone antibiotic, besifloxacin, was loaded in 36 microneedles arranged in a 6 × 6 array format within a 1 cm2 area. The average height and base width of microneedles was 961 ± 27 and 366 ± 16 μm, respectively. Each microneedle array contained 103.4 ± 8.5 μg of besifloxacin. Cryosectioning and confocal microscopy of excised human cornea revealed that microneedles penetrated to a depth of up to 200 μm. Microneedles were found to completely dissolve in the cornea within 5 min. Application of microneedles for 5 min significantly (p < 0.05) improved the besifloxacin deposition and permeation through the cornea compared with free besifloxacin solution. Similarly, besifloxacin-loaded microneedles showed greater antibacterial activity in Staphylococcus aureus-infected cornea in comparison to free besifloxacin solution. Taken together, rapidly dissolving microneedles can be developed to effectively deliver besifloxacin to treat bacterial infections in the cornea and eye.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app