Add like
Add dislike
Add to saved papers

Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach.

Urinary tract infections are the utmost common bacterial infections caused by Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli, and Serratia marcescens. These uropathogens resist the action of several antibiotics due to their ability to form biofilms. Most of these bacterial pathogens use the quorum sensing (QS) machinery to co-ordinate their cells and regulate several virulence factors and biofilm formation. On the other hand, the anti-quorum sensing (anti-QS) and antibiofilm potential of silver nanoparticles have been well reported against certain bacterial pathogens, but to the best of our knowledge, no report is available against the pathogenicity of uropathogens in particular S. marcescens and P. mirabilis. Therefore, the present study is primarily focused on the anti-QS and antibiofilm potential of Piper betle-based synthesized silver nanoparticles (PbAgNPs) against S. marcescens and P. mirabilis. Initially, the silver nanoparticles were synthesized by the aqueous extract of P. betle and characterized by UV-absorbance spectroscopy, XRD, FT-IR, SEM, TEM, and DLS. The synthesized silver nanoparticles were assessed for their anti-QS activity and the obtained results revealed that the PbAgNPs inhibited the QS-mediated virulence factors such as prodigiosin, protease, biofilm formation, exopolysaccharides and hydrophobicity productions in uropathogens. The gene expression analysis divulged the downregulation of fimA, fimC, flhD, and bsmB genes in S. marcescens and flhB, flhD, and rsbA genes in P. mirabilis, respectively. The in vivo Caenorhabditis elegans assays revealed the non-toxic and anti-adherence efficiency of PbAgNPs. Furthermore, the non-toxic effect of PbAgNPs was also confirmed through peripheral blood mononuclear cells and normal lung epithelial cells. Therefore, the contemporary study demonstrates the use of PbAgNPs as a possible alternative toward conventional antibiotics in controlling QS and biofilm-related uropathogen infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app