Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA.

Acta Biomaterialia 2018 March 2
A novel redox-sensitive system for co-delivering hydrophobic drugs and hydrophilic siRNA or shRNA was developed by conjugating gambogic acid (GA) with poly(amido amine)s (PAAs) through amide bonds, which is called GA-conjugated PAAs (PAG). PAG can self-assemble into micelles as amphiphilic block copolymers, which exhibits an excellent loading ability for the co-delivery of docetaxel (DTX) and MMP-9 shRNA with adjustable dosing ratios. In addition, confocal microscopy, flow cytometry and in vitro transfection analyses demonstrated more efficient cellular internalization of DTX and MMP-9 shRNA after incubation with PAG/DTX- MMP-9 shRNA micelles (PAG/DTX-shRNA) than with free drugs. Unlike traditional amphiphilic copolymer micelles, GA conjugated in PAG possesses an intrinsic anticancer efficacy. The presence of disulfide bonds in PAAs enables rapid disassembly of PAG micelles in response to reducing agents, inducing the release of loaded drugs (DTX, GA and MMP-9 shRNA). In vitro cellular assays revealed that PAG/DTX-shRNA micelles inhibited MCF-7 cell proliferation more efficiently than the single drug or single drug-loaded micelles. In vivo biodistribution and anti-tumor effect studies using an MCF-7 breast cancer xenograft mouse model have indicated that PAG/DTX-shRNA micelles can enhance drug accumulation compared with the free drug, thereby sustaining the therapeutic effect on tumors. Additionally, PAG/DTX-shRNA micelles displayed a greater anti-tumor efficacy than Taxotere® and PAG-shRNA micelles. These results suggest that the redox-sensitive PAG platform is a promising co-delivery system for combining drugs and gene therapy for the treatment of cancer.

STATEMENT OF SIGNIFICANCE: The PAG micelles were designed by conjugating gambogic acid (GA) with poly(amido amine)s (PAAs), which would serve dual purposes as both gene and drugs co-delivery carrier and an anti-tumor prodrug. Unlike traditional amphiphilic micelles, GA conjugated in PAG could exert its intrinsic efficacy and provide synergistic antiproliferative effects with docetaxel (DTX) on MCF-7 cells. Disulfide bonds in PAG enables a rapid disassembly of PAG micelles in response to reducing agents and to release all loaded drugs (DTX, GA and MMP-9 shRNA) at tumor sites. PAG/DTX-shRNA micelles displayed greater anti-tumor efficacy than that of Taxotere®, indicating the design concept for PAG works well. And the strategy for PAG could be used to develop a series of similar co-delivery systems through conjugations of other small-molecule drugs with PAAs, such as doxorubicin, methotrexate and other drugs with carboxy groups in their structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app