Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantitative Analysis of Helical Flow with Accuracy Using Ultrasound Speckle Image Velocimetry: In Vitro and in Vivo Feasibility Studies.

Venous valve dysfunction and induced secondary abnormal flows are closely associated with venous diseases. Thus, detailed analysis of venous valvular flow is invaluable from biological and medical perspectives. However, most of the previous studies on venous perivalvular flows were based on qualitative analysis. On the contrary, quantitative analysis of perivalvular flows has not been fully understood. In this study, we used the ultrasound speckle image velocimetry (SIV) technique, which utilizes the speckle patterns of red blood cells (RBCs) created by ultrasound waves to measure 3-D valvular flows quantitatively. The flow structures obtained with the proposed SIV technique for an in vitro model were compared with those obtained by numerical simulation and the color Doppler method to validate the measurement accuracy of the ultrasound SIV technique. Blood flow in the human great saphenous vein was then measured at various distances from the valve with and without exercise. 3-D valvular flow was analyzed in accordance with the dimensionless index, helical intensity. The results obtained by the proposed method matched well with those obtained by numerical simulation and the color Doppler method. The hemodynamic characteristics of 3-D valvular helical flow which were analyzed experimentally using the SIV method would be used for quantitative diagnosis of venous valvular diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app