Add like
Add dislike
Add to saved papers

Propyl gallate/cyclodextrin supramolecular complexes with enhanced solubility and radical scavenging capacity.

Food Chemistry 2018 April 16
This study prepared and investigated the inclusion complexes of propyl gallate (PG) with beta-cyclodextrin (β-CD) and its water-soluble derivatives dimethyl-beta-cyclodextrin (DM-β-CD), hydroxypropyl-beta-cyclodextrin (HP-β-CD), and sulfobutylether-beta-cyclodextrin (SBE-β-CD). Phase solubility studies indicated that the formed complexes were in 1:1 stoichiometry. FT-IR, PXRD, DSC, 1 H-NMR, ROESY-NMR, and SEM analysis results confirmed the formation of the complexes. The NMR results indicated that the aromatic ring of PG was embedded into the CD cavity. The aqueous solubility of PG was markedly improved, and that of the PG/DM-β-CD complex increased by 365.3 times. In addition, the results of the antioxidant activity assay showed that the hydroxyl radical and superoxide radical scavenging capacities of the complexes increased by 3-11 times and 1-6.5 times, respectively, compared with those of PG under the same concentration. Therefore, CD/PG inclusion complexes with improved solubility and radical scavenging capacity can be used as water-soluble antioxidants in the food industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app