JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks.

Recurrently coupled networks of inhibitory neurons robustly generate oscillations in the gamma band. Nonetheless, the corresponding Wilson-Cowan type firing rate equation for such an inhibitory population does not generate such oscillations without an explicit time delay. We show that this discrepancy is due to a voltage-dependent spike-synchronization mechanism inherent in networks of spiking neurons which is not captured by standard firing rate equations. Here we investigate an exact low-dimensional description for a network of heterogeneous canonical Class 1 inhibitory neurons which includes the sub-threshold dynamics crucial for generating synchronous states. In the limit of slow synaptic kinetics the spike-synchrony mechanism is suppressed and the standard Wilson-Cowan equations are formally recovered as long as external inputs are also slow. However, even in this limit synchronous spiking can be elicited by inputs which fluctuate on a time-scale of the membrane time-constant of the neurons. Our meanfield equations therefore represent an extension of the standard Wilson-Cowan equations in which spike synchrony is also correctly described.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app