Add like
Add dislike
Add to saved papers

Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances.

Physical Review Letters 2017 December 9
Quantum manipulation is challenging in localized-surface plasmon resonances (LSPRs) due to strong dissipations. To enhance quantum coherence, here we propose to engineer the electromagnetic environment of LSPRs by placing metallic nanoparticles (MNPs) in optical microcavities. An analytical quantum model is first built to describe the LSPR-microcavity interaction, revealing the significantly enhanced coherent radiation and the reduced incoherent dissipation. Furthermore, when a quantum emitter interacts with the LSPRs in the cavity-engineered environment, its quantum yield is enhanced over 40 times and the radiative power over one order of magnitude, compared to those in the vacuum environment. Importantly, the cavity-engineered MNP-emitter system can enter the strong coupling regime of cavity quantum electrodynamics, providing a promising platform for the study of quantum plasmonics, quantum information processing, precise sensing, and spectroscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app