Add like
Add dislike
Add to saved papers

Enzymatic Electrosynthesis of Alkanes by Bioelectrocatalytic Decarbonylation of Fatty Aldehydes.

Angewandte Chemie 2018 Februrary 24
An enzymatic electrosynthesis system was created by combining an aldehyde deformylating oxygenase (ADO) from cyanobacteria that catalyzes the decarbonylation of fatty aldehydes to alkanes and formic acid with an electrochemical interface. This system is able to produce a range of alkanes (octane to propane) from aldehydes and alcohols. The combination of this bioelectrochemical system with a hydrogenase bioanode yields a H2 /heptanal enzymatic fuel cell (EFC) able to simultaneously generate electrical energy with a maximum current density of 25 μA cm-2 at 0.6 V and produce hexane with a faradaic efficiency of 24 %.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app