Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Microprobe Capillary Electrophoresis Mass Spectrometry for Single-cell Metabolomics in Live Frog (Xenopus laevis) Embryos.

The quantification of small molecules in single cells raises new potentials for better understanding the basic processes that underlie embryonic development. To enable single-cell investigations directly in live embryos, new analytical approaches are needed, particularly those that are sensitive, selective, quantitative, robust, and scalable to different cell sizes. Here, we present a protocol that enables the in situ analysis of metabolism in single cells in freely developing embryos of the South African clawed frog (Xenopus laevis), a powerful model in cell and developmental biology. This approach uses a capillary microprobe to aspirate a defined portion from single identified cells in the embryo, leaving neighboring cells intact for subsequent analysis. The collected cell content is analyzed by a microscale capillary electrophoresis electrospray ionization (CE-ESI) interface coupled to a high-resolution tandem mass spectrometer. This approach is scalable to various cell sizes and compatible with the complex three-dimensional structure of the developing embryo. As an example, we demonstrate that microprobe single-cell CE-ESI-MS enables the elucidation of metabolic cell heterogeneity that unfolds as a progenitor cell gives rise to descendants during development of the embryo. Besides cell and developmental biology, the single-cell analysis protocols described here are amenable to other cell sizes, cell types, or animal models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app