JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

A Facile Protocol to Generate Site-Specifically Acetylated Proteins in Escherichia Coli.

Post-translational modifications that occur at specific positions of proteins have been shown to play important roles in a variety of cellular processes. Among them, reversible lysine acetylation is one of the most widely distributed in all domains of life. Although numerous mass spectrometry-based acetylome studies have been performed, further characterization of these putative acetylation targets has been limited. One possible reason is that it is difficult to generate purely acetylated proteins at desired positions by most classic biochemical approaches. To overcome this challenge, the genetic code expansion technique has been applied to use the pair of an engineered pyrrolysyl-tRNA synthetase variant, and its cognate tRNA from Methanosarcinaceae species, to direct the cotranslational incorporation of acetyllysine at the specific site in the protein of interest. After first application in the study of histone acetylation, this approach has facilitated acetylation studies on a variety of proteins. In this work, we demonstrated a facile protocol to produce site-specifically acetylated proteins by using the model bacterium Escherichia coli as the host. Malate dehydrogenase was used as a demonstration example in this work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app