Add like
Add dislike
Add to saved papers

MicroRNA-27b Depletion Enhances Endotrophic and Intravascular Lipid Accumulation and Induces Adipocyte Hyperplasia in Zebrafish.

miR-27b has emerged as a regulatory hub in cholesterol and lipid metabolism, and as a potential therapeutic target for treating atherosclerosis and obesity. However, the impact of miR-27b on lipid levels in vivo remains to be determined. Zebrafish lipids are normally stored as triacylglycerols (TGs) and their main storage sites are visceral, intramuscular, and subcutaneous lipid depots, and not blood vessels and liver. In this study, we applied microRNA-sponge (miR-SP) technology and generated zebrafish expressing transgenic miR-27b-SP (C27bSPs), which disrupted endogenous miR-27b activity and induced intravascular lipid accumulation (hyperlipidemia) and the early onset of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Oil Red O staining predominantly increased in the blood vessels and livers of larvae and juvenile C27bSPs, indicating that miR-27b depletion functionally promoted lipid accumulation. C27bSPs also showed an increased weight gain with larger fat pads, resulting from adipocyte hyperplasia. Molecular analysis revealed that miR-27b depletion increased the expression of genes that are associated with lipogenesis and the endoplasmic reticulum (ER). Moreover, miR-27b-SP increased peroxisome proliferator-activated receptor γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α, and sterol regulatory element binding transcription factor 1c (SREBP-1c) expression and contributed to lipogenesis and adipogenesis.

CONCLUSION: Our results suggest that miR-27b-SP acts as a lipid enhancer by directly increasing the expression of several lipogenic/adipogenic transcriptional factors, resulting in increased lipogenesis and adipogenesis. In this study, miR-27b expression improved lipid metabolism in C27bSPs, which suggests that miR-27b is an important lipogenic factor in regulating early onset of hyperlipidemia and adipogenesis in zebrafish.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app