Add like
Add dislike
Add to saved papers

The Divalent Elements Changes in Early Stages of Chronic Kidney Disease.

As the glomerular filtration rate (GFR) decreases, it can cause imbalance in some divalent elements. These imbalances can cause increased oxidative stress in patients with renal impairment. The aim of present study was to investigate the changes of these divalent elements with CKD progression. One hundred and ninety-four patients with chronic kidney diseases (CKD) were divided into five stages, stage 1, 2, 3a, 3b, 4, and were recruited into this study. The divalent elements, calcium, magnesium, phosphorus, as well as iron, zinc, and copper were determined in clinical chemistry analyzer. Higher CKD stages were found to be associated with increased levels of phosphorus and copper; Ptrend values were 0.002 and 0.004, respectively. Also, higher CKD stages were associated with decreased levels of zinc; Ptrend value was 0.002, after adjustment for age, gender, smoke, education, diabetes, hypertension, and BMI. Decreased levels of zinc and elevated levels of phosphorus and copper might increase the oxidative stress and complications in CKD patients. Future randomized studies are needed to show whether adjusting dietary intake of phosphorus, copper, and zinc might affect the progression of CKD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app