Add like
Add dislike
Add to saved papers

Analysis of 3D spatial trajectories in Parkinsonian, essential and physiological tremors.

The clinical differentiation of the tremor in Parkinson's disease (PD) and essential tremor (ET) can sometimes be challenging, especially in the early stage of the disease. As different neural oscillators are involved in the generation of these two types of tremor, their trajectorial analysis could also be different. The goal of this study was to investigate whether some disease-specific patterns related to their tremor trajectories in fact exist. The three-axial accelerometer signals of the hand tremor obtained from a total of 369 participants [49 with PD, 25 with isolated resting tremor (iRT), 133 with ET, and finally 162 normal subjects with physiological tremor (Ph)] were subjected to vector analysis using a custom-made mathematical program. Subsequently, detailed trajectorial analysis was performed. The key discrimination ability between the PD and ET groups was represented by the ratio of the vector in the y-z plane and the spatial vector. The great majority of the patients with PD and iRT showed significantly higher values as compared to those with ET. The differences between the PD and iRT groups and between ET and Ph were not statistically significant. We suggest that the newly introduced three-axial accelerometry with analysis of tremor trajectories could be beneficial in differentiating between tremors in PD and ET.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app