Add like
Add dislike
Add to saved papers

Characterization and correction of intraoperative soft tissue deformation in image-guided laparoscopic liver surgery.

Laparoscopic liver surgery is challenging to perform due to a compromised ability of the surgeon to localize subsurface anatomy in the constrained environment. While image guidance has the potential to address this barrier, intraoperative factors, such as insufflation and variable degrees of organ mobilization from supporting ligaments, may generate substantial deformation. The severity of laparoscopic deformation in humans has not been characterized, and current laparoscopic correction methods do not account for the mechanics of how intraoperative deformation is applied to the liver. We first measure the degree of laparoscopic deformation at two insufflation pressures over the course of laparoscopic-to-open conversion in 25 patients. With this clinical data alongside a mock laparoscopic phantom setup, we report a biomechanical correction approach that leverages anatomically load-bearing support surfaces from ligament attachments to iteratively reconstruct and account for intraoperative deformations. Laparoscopic deformations were significantly larger than deformations associated with open surgery, and our correction approach yielded subsurface target error of [Formula: see text] and surface error of [Formula: see text] using only sparse surface data with realistic surgical extent. Laparoscopic surface data extents were examined and found to impact registration accuracy. Finally, we demonstrate viability of the correction method with clinical data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app