Add like
Add dislike
Add to saved papers

Effects of Ginkgo biloba leaf extract on local renin-angiotensin system through TLR4/NF-κB pathway in cardiac myocyte.

The present study investigated the effects of Ginkgo biloba leaf extract (GBE50) on lipopolysaccharide (LPS) induced Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway and its effects on angiotensinogen (ATG) and AT1a receptor, so as to explore the mechanism of GBE50 in prevention and treatment of left ventricular remodeling. In vitro cultured neonatal rat ventricular myocytes (NRVMs) were divided into 4 groups including i) control group: DMEM medium; ii) LPS group: iii) LPS + GBE50 group; iv) LPS + caffeic acid phenethyl ester (CAPE, specific inhibitor of NF-κB) group. Nuclear translocation of NF-κB p65 was detected by immunocytochemical method after intervention for 24 h. Expression of TLR4, ATG, AT1a receptors and β-myosin heavy chain (β-MHC) mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR). Protein content of cardiomyocytes was measured by Coomassie Brilliant Blue method. Under LPS stimulation, expression level of TLR4 mRNA in NRVMs was significantly increased (P<0.01), nuclear translocation of NF-κB p65 was increased, expression levels of ATG, AT1a receptor and β-MHC mRNA and the protein content in cells were also increased significantly (P<0.01). GBE50 and CAPE significantly inhibited nuclear translocation of NF-κB p65. GBE50 and CAPE treatments also reduced the increased mRNA levels of TLR4, ATG, AT1a receptor and β-MHC and protein content in cell caused by LPS stimulation. We concluded that, GBE50 can inhibit the activation of local renin-angiotensin system by inhibiting the activation of TLR4/NF-κB and TLR4/NF-κB, signaling pathway inhibition may be one of the mechanisms of the role of Ginkgo biloba leaf extract in preventing myocardial remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app