Add like
Add dislike
Add to saved papers

An in vitro endothelial cell protective effect of secretory leukocyte protease inhibitor against simulated ischaemia/reperfusion injury.

Endothelial dysfunction is an essential deleterious modulator of ischaemia/reperfusion (I/R) injury. Secretory leukocyte protease inhibitor (SLPI) has demonstrated myocardial protection in cardiac transplantation; however, the effect of SLPI in endothelial I/R injury remains unexplored. In the present study, the effect of recombinant human SLPI (rhSLPI) treatment against endothelial cells (ECs) subjected to simulated I/R injury and the effect of treatment at different time points were determined. Human umbilical vein ECs (HUVECs) were subjected to normoxic or simulated I/R (sI/R) conditions, and rhSLPI at concentrations of 1, 10, 100 and 1,000 ng/ml was added to the cells prior to ischaemia, during ischaemia or at the onset of reperfusion. Endothelial injury and cytoskeleton disruption were assessed, and western blot analysis was conducted. The results revealed that rhSLPI treatment at 1,000 ng/ml significantly increased the HUVEC viability under sI/R injury (P<0.05). In addition, treatment with rhSLPI prior to or during ischaemia markedly attenuated the activity of lactase dehydrogenase compared with that in the sI/R group. In addition, the H2 O2 -induced reactive oxygen species production was reduced by ~17% upon rhSLPI pretreatment. Endothelial cytoskeleton disruption was also preserved by rhSLPI added prior to the reperfusion period. Furthermore, pretreatment with rhSLPI promoted protein kinase B activation, as well as reduced p38 mitogen-activated protein kinase phosphorylation and B-cell lymphoma 2-associated X protein expression in response to I/R injury. These findings indicated that rhSLPI possesses antioxidant and antiapoptotic properties against endothelial responses to I/R injury. Therefore, the cytoprotective effect of rhSLPI may provide a potential pharmaceutical target to limit endothelial-mediated I/R injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app