Add like
Add dislike
Add to saved papers

BMP-7 accelerates the differentiation of rabbit mesenchymal stem cells into cartilage through the Wnt/β-catenin pathway.

Mesenchymal stem cells (MSCs) are able to differentiate into adipocytes, chondroblasts or cartilage under different stimulation conditions. Identifying a mechanism that triggers the differentiation of MSCs into cartilage may help the development of novel therapeutic approaches for heterotopic ossification, the pathological formation of lamellar bone in soft tissue outside the skeleton that may lead to debilitating immobility. Bone morphogenetic proteins (BMPs), including BMP-7, are the most potent growth factors for enhancing bone formation. The current study aimed to understand the potential involvement of the Wnt/β-catenin signaling pathway in the BMP-7-induced growth of rabbit MSCs (rMSCs). Different concentrations of BMP-7 were applied to cultured rMSCs, and proliferation was evaluated by MTT assay. Changes in the phosphorylation state of glycogen synthase kinase (GSK)-3β, in addition to the expression levels of alkaline phosphatase, β-catenin and runt-related transcription factor 2 were observed by western blot analysis. Following treatment with BMP-7, the phosphorylation of GSK-3β was stimulated and the expression of β-catenin, ALP and Runx2 was increased. Furthermore, inhibiting β-catenin signaling with XAV-939 suppressed the BMP-7-mediated changes. The results indicated that the BMP-7-induced differentiation of rMSCs into cartilage was promoted primarily by the Wnt/β-catenin pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app