Add like
Add dislike
Add to saved papers

Alterations of antitumor and metabolic responses in L5178Y-R lymphoma-bearing mice after only 30-minute daily chronic stress exposure.

Experimental Oncology 2017 December
AIM: In stress research, reducing times of stress induction may contribute to improving the well-being of experimental animals, especially in cancer models, already under physiological distress. To support this idea, we evaluated the effects of a short-timed stress protocol on endocrine, metabolic and immune indicators in mice bearing the L5178Y-R lymphoma.

MATERIALS AND METHODS: A 30-minute daily stress protocol was applied for 28 days to healthy and lymphoma-bearing BALB/c mice; body weight, plasma levels of corticosterone, norepinephrine, Th1/Th2 cytokines, insulin, and leptin, were measured.

RESULTS: We found a 12% significant decrease in body weight in non-tumor bearing mice under stress (p < 0.007). The disruption of weight evolution was accompanied by a stress induced 85% decrease in plasmatic leptin (p < 0.01) and total reduction of insulin. Tumor burden alone was associated to an increase in more than two-fold of plasmatic levels of norepinephrine (p < 0.008). Neither stress nor tumor or their combination, resulted in an elevation of systemic IL-6. IFN-γ levels were 20 times higher in lymphoma-bearing animals when compared with non-tumor bearing mice (p < 0.01); however, under stress, this response was reduced by half, indicating a suppressing effect of chronic stress on the antitumor immune response.

CONCLUSION: A short-timed stress induction is enough to cause significant alterations in the metabolism and immunity of healthy and tumor-bearing mice, supporting the use of short-timed protocols as an efficient way to induce chronic stress that also considers concerns regarding the well-being of experimental animals in biomedical research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app